
68

3. Розробка мобільного android-додатку з застосуванням принципів clean architecture /

Г. Козуб, Ю. Козуб, Г. Могильний, А. Жуков. Вісник Східноукраїнського нац. ун-ту ім. Воло-

димира Даля. 2021. № 5(269). С. 5–10. URL: https://journals.snu.edu.ua/index.php/VisnikSNU/

article/view/38

4. Козуб Ю., Козуб Г. Особливості розробки мультиплатформних застосунків на kotlin.

Вісник Хмельн. нац. ун-ту. 2023. № 1. С. 224–229. URL: https://journals.khnu.km.ua/vestnik/?p=

16772

УДК 004.056.523:004.651.54:004.439:681.5

Мисько Б. В., здобувач вищої освіти 4 курсу

спеціальності 122 Комп’ютерні науки,

Фриз І. В., канд. фіз.-мат. наук, старший

викладач кафедри інформаційних технологій

ІНТЕГРАЦІЯ JWT ТА АЛГОРИТМІВ ГЕШУВАННЯ

ДЛЯ АВТЕНТИФІКАЦІЇ ТА АВТОРИЗАЦІЇ В CRM-СИСТЕМАХ

Донецький національний університет імені Василя Стуса, м. Вінниця

У сучасних інформаційних системах, зокрема у CRM-системах (Customer

Relationship Management), безпека користувацьких даних та контроль доступу до

ресурсів є критично важливими аспектами. З огляду на активне впровадження

вебтехнологій та хмарних обчислень традиційні методи автентифікації, які базу-

ються на збереженні паролів у відкритому вигляді або в сесійних змінних, втра-

тили актуальність. Їм на зміну прийшли криптографічно стійкі алгоритми гешу-

вання та маркерні механізми авторизації, серед яких особливої уваги заслуговує

JSON Web Token (JWT) [1].

Метою дослідження є розробка надійного механізму автентифікації та авто-

ризації користувачів для CRM-системи. У межах роботи передбачено впрова-

дження безпечного способу зберігання облікових даних, реалізацію цифрового

токена для підтвердження ідентичності користувача, а також побудову гнучкої

рольової моделі контролю доступу.

Гешування паролів – це незворотний процес, у якому зі вхідного значення

(пароля) створюється фіксованої довжини геш-код. Одним із найбільш надійних

алгоритмів є BCrypt, який має вбудований механізм сольової генерації та адаптив-

ної складності [2]. Перевагами BCrypt є стійкість до атак методом перебору та

можливість збільшення складності з часом.

JWT – відкритий стандарт (RFC 7519), який описує компактний, автономний

спосіб безпечної передачі інформації між сторонами як JSON-об’єкт [1]. Токен

складається з трьох частин: заголовка (header), корисного навантаження (payload)

та підпису (signature). Його переваги включають можливість безсерверної авто-

ризації, розширюваність і незалежність від конкретного протоколу передачі [3].

Архітектурна модель реалізації механізму автентифікації та авторизації базується

на поєднанні трьох основних компонентів:

69

1. Гешування пароля для збереження паролів у захищеному вигляді:
namespace CRMSystem.WebAPI.Auth
{
 public class PasswordHasher : IPasswordHasher
 {
 public string Generate(string password) =>
 BCrypt.Net.BCrypt.EnhancedHashPassword(password);

 public bool Verify(string password, string hashedPassword) =>
 BCrypt.Net.BCrypt.EnhancedVerify(password, hashedPassword);
 }
}

2. Генерація JWT для створення цифрового токена на основі користувацьких

даних:
public class JwtProvider(IOptions<JwtOptions> options)
 : IJwtProvider
{
 private readonly JwtOptions _options = options.Value;

 public string GenerateToken(User user)
 {
 Claim[] claims =
 [
 new("userId", user.Id.ToString()),
 new("username", user.Username),
 new("role", user.RoleId.ToString())
];

 var signingCredentials = new SigningCredentials(
 new
SymmetricSecurityKey(Encoding.UTF8.GetBytes(_options.SecretKey)),
 SecurityAlgorithms.HmacSha256);

 var token = new JwtSecurityToken(
 claims: claims,
 signingCredentials: signingCredentials,
 issuer: _options.Issuer,
 audience: _options.Audience,
 expires: DateTime.UtcNow.AddHours(_options.ExpireHours));

 return new JwtSecurityTokenHandler().WriteToken(token);
 }
}

3. Авторизація за ролями для контролю доступу до ресурсів залежно від ролі

користувача:
public static void AddApiAuthentication(this IServiceCollection services,
IConfiguration configuration)
{
 var jwtOptions =
configuration.GetSection(nameof(JwtOptions)).Get<JwtOptions>();

70

 services.AddAuthentication(JwtBearerDefaults.AuthenticationScheme)
 .AddJwtBearer(options =>
 {
 options.TokenValidationParameters = new
TokenValidationParameters
 {
 ValidateIssuer = false,
 ValidateAudience = false,
 ValidateLifetime = true,
 ValidateIssuerSigningKey = true,
 IssuerSigningKey = new
SymmetricSecurityKey(Encoding.UTF8.GetBytes(jwtOptions!.SecretKey))
 };

 options.Events = new JwtBearerEvents
 {
 OnMessageReceived = context =>
 {
 context.Token = context.Request.Cookies["jwt"];
 return Task.CompletedTask;
 }
 };
 });

 services.AddAuthorization();
}

public static void AddAuthorizationPolicy(this IServiceCollection services)
{
 services.AddAuthorizationBuilder()
 .AddPolicy(AuthorizationPolicies.AdminOnly, policy =>
 policy.RequireRole(((int)Roles.Admin).ToString()))
 .AddPolicy(AuthorizationPolicies.UserOnly, policy =>
 policy.RequireRole(((int)Roles.User).ToString()))
 .AddPolicy(AuthorizationPolicies.UserOrAdmin, policy =>
 policy.RequireRole(((int)Roles.User).ToString(),
((int)Roles.Admin).ToString()));
}

public static void AddCookiePolicy(this IApplicationBuilder app)
{
 app.UseCookiePolicy(new CookiePolicyOptions
 {
 MinimumSameSitePolicy = SameSiteMode.Strict,
 HttpOnly = HttpOnlyPolicy.Always,
 Secure = CookieSecurePolicy.Always
 });
}

Представлені фрагменти коду демонструють реалізацію безпечного механі-

зму ідентифікації та розмежування доступу користувачів у CRM-системі. Для

зберігання паролів застосовується стійкий криптографічний алгоритм, який уне-

можливлює їх пряме відновлення. Цифрові токени, сформовані на основі корис-

71

тувацьких атрибутів, дають змогу здійснювати перевірку прав доступу без необ-

хідності зберігати сесію на сервері. Застосування ролей та політик доступу забез-

печує гнучке управління дозволами в межах системи, а інтеграція токена в

Cookies з налаштуваннями безпеки мінімізує ризик атак типу XSS та CSRF [3].

Отже, проведене проєктування та впровадження дали змогу створити модель,

що забезпечує як безпечне зберігання облікових даних, так і контроль доступу на

основі ролей без постійного зберігання сесійної інформації. Така архітектура від-

повідає актуальним вимогам до захисту персональних даних, є масштабованою,

ефективною для розподілених систем і може бути адаптована для різних типів

користувацьких інтерфейсів. Запропонований підхід доводить доцільність поєд-

нання гешування та токен-орієнтованої авторизації як основи для побудови на-

дійної та гнучкої системи безпеки у корпоративному програмному забезпеченні.

Список використаних джерел

1. A TOTP-based secure data storage system in the cloud environment using the JWT token

approach / A. Shahnawaz, A. Mohd, A. Javed, M. Shabana. International Journal of Systems Assurance

Engineering and Management. 2025. Vol. 16. P. 1565–1578. DOI: 10.1007/s13198-025-02775-8.

2. Enhancing the Security of JSON Web Token Using Signal Protocol and Ratchet System /

P. Singh, G. Choudhary, S. K. Shandilya, V. Sihag. Proceedings of Emerging Trends and Technolo-

gies on Intelligent Systems. Advances in Intelligent Systems and Computing. Vol. 1414. Springer, Sin-

gapore. DOI: 10.1007/978-981-19-4182-5_31.

3. Pyroh M., Tereshchuk G., Toroshanko O. Authentication Principles as Security aspects of

Web Development. Measuring And Computing Devices In Technological Processes. 2025. №. 1.

P. 294–301. DOI: 10.31891/2219-9365-2025-81-36.

УДК 004.056.5

Первачук Р. Ю., здобувач вищої освіти 4 курсу

спеціальності 122 Комп’ютерні науки,

Антонов Ю. С., канд. фіз.-мат. наук, доцент,

доцент кафедри інформаційних технологій

РОЗРОБКА УТИЛІТ ДЛЯ АГРЕГАЦІЇ ІНТЕРНЕТ-РЕСУРСІВ,

ЩО ПІДЛЯГАЮТЬ БЛОКУВАННЮ

Донецький національний університет імені Василя Стуса, м. Вінниця

У сучасному інформаційному просторі за допомогою інтернет-ресурсів здійс-

нюються різноманітні кібератаки, від фішингу до ransomware або DDoS-атак [1–

3]. У зв’язку з цим підтримка актуального переліку інтернет-ресурсів, що підля-

гають блокуванню, має здійснюватись як на основі локальних списків, так і на

основі списків, доступних у мережі Інтернет. Блокування таких джерел є одним

із базових засобів протидії кіберзагрозам як у державних, так і в приватних мере-

жах. Проте наявні засоби фільтрації часто є вузькоспеціалізованими, обмежени-

ми у форматах або залежними від хмарних сервісів, що знижує рівень автоном-

ності та адаптивності.

https://doi.org/10.1007/s13198-025-02775-8
https://doi.org/10.1007/978-981-19-4182-5_31
https://doi.org/10.31891/2219-9365-2025-81-36

