
91

поєднанні з високоякісним вокодером (як WaveNet) може вважатися кращим ви-
бором, оскільки він часто встановлює стандарт якості. Проте якщо ключовими
факторами є швидкість генерації, ефективність і можливість обробки великих обся-
гів тексту для відео, то системи на кшталт FastSpeech 2 та особливо FastSpeech 2s
є значно привабливішими. Вони пропонують відмінний компроміс між швидкі-
стю та якістю, що робить їх більш практичними для багатьох реальних завдань
автоматизованого озвучення. Отже, оптимальна TTS-система обирається шляхом
зважування переваг у природності звучання проти переваг у швидкості та ефек-
тивності генерації відповідно до потреб конкретного проєкту.

Список використаних джерел

1. A Survey on Neural Speech Synthesis / X. Tan, T. Qin, F. Soong, T. -Y. Liu. arXiv.org.
2021. URL: https://arxiv.org/abs/2106.15561 (дата звернення: 12.05.2025).

2. Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions / J. Shen,
R. Pang, R. J. Weiss, M. Schuster, N. Jaitly, Z. Yang, Z. Chen, Y. Zhang, Y. Wang, R. J. Skerry-
Ryan, R. A. Saurous, Y. Agiomyrgiannakis, Y. Wu. arXiv.org. 2017. URL: https://arxiv.org/abs/
1712.05884 (дата звернення: 12.05.2025).

3. WaveNet: A Generative Model for Raw Audio / A. van den Oord, S. Dieleman, H. Zen,
K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, K. Kavukcuoglu. arXiv.org. 2016.
URL: https://arxiv.org/abs/1609.03499 (дата звернення: 12.05.2025).

4. Towards achieving robust universal neural vocoding / J. Lorenzo-Trueba, T. Drugman,
J. Latorre, T. Merritt, B. Putrycz, R. Barra-Chicote, A. Moinet, V. Aggarwal. arXiv.org. 2018. URL:
https://arxiv.org/abs/1811.06292 (дата звернення: 12.05.2025).

5. FastSpeech 2: Fast and High-Quality End-to-End Text to Speech / Y. Ren, C. Hu, X. Tan,
T. Qin, S. Zhao, Z. Zhao, T.-Y. Liu. arXiv.org. 2020. URL: https://arxiv.org/abs/2006.04558 (дата

звернення: 12.05.2025).

УДК 004.415.2:004.657

Лисак В. О., здобувач вищої освіти 2 курсу
спеціальності 122 Комп’ютерні науки
Зелінська О. В., канд. техн. наук, доцент,
в. о. завідувача кафедри інформаційних технологій

ОПТИМІЗАЦІЯ ЗАПИТІВ ДО БАЗИ ДАНИХ У ВЕБПРОЄКТАХ

Донецький національний університет імені Василя Стуса, м. Вінниця

У сучасних вебпроєктах, де PHP виступає серверною мовою, а MySQL – си-
стемою керування базами даних, обсяг інформації постійно зростає. Відповідно
ефективність SQL-запитів стає критично важливою для продуктивності системи.
Запити без належної оптимізації можуть значно «стиснути» швидкодію програми
та спричинити затримки у відповіді [1].

Для забезпечення взаємодії між вебдодатками та базами даних використову-
ються переважно два підходи: безпосереднє виконання SQL-запитів або застосу-
вання ORM (Object-Relational Mapping). Перший підхід полягає у прямому напи-
санні SQL-команд у коді програми для роботи з базою даних. Натомість другий
підхід ORM представляє технологію абстракції, що забезпечує відображення
структур бази даних на об’єкти цільової мови програмування вебдодатку [7].

https://arxiv.org/abs/2106.15561
https://arxiv.org/abs/1712.05884
https://arxiv.org/abs/1712.05884
https://arxiv.org/abs/1609.03499
https://arxiv.org/abs/1811.06292
https://arxiv.org/abs/2006.04558

92

Оптимізація запитів є надзвичайно актуальною у контексті сучасних інфор-

маційних систем. Неоптимізовані запити часто стають «вузькими місцями», що

уповільнюють виконання операцій з базою даних (БД) і збільшують навантаження

на сервер [2]. Своєчасне застосування технік оптимізації дає змогу знизити кіль-

кість звернень до БД, прискорити відповіді сервера і покращити користувацький

досвід. Актуальність теми зумовлена потребою обробки великих обсягів даних

та забезпечення масштабованості вебдодатків.

Сучасні керівництва з оптимізації SQL рекомендують низку перевірених

практик. Зокрема, документація MySQL радить використовувати оператор

EXPLAIN для отримання плану виконання запиту і визначення, де треба додати

індекси [3]. Інші джерела зазначають, що нормалізація структури БД зменшує

надлишковість даних і складність запитів, що часто дає змогу спростити потрібні

JOIN-операції і підвищити швидкодію [4]. Дослідження оптимізації JOIN-ів під-

креслюють важливість індексації стовпців, за якими відбувається з’єднання: без

відповідних індексів MySQL змушений робити повне сканування таблиць, що

суттєво сповільнює виконання [5]. Також у літературі зазначаються і практики

ефективного проєктування запитів (наприклад, уникнення зайвого SELECT*) та

використання кешування для зменшення кількості звернень до БД. Зазначені пуб-

лікації рекомендують мінімізувати перенесення зайвих полів і використовувати

обмеження кількості рядків (LIMIT) під час формування результатів [1; 2].

Експерти з веброзробки підкреслюють, що ефективність роботи з базами да-

них є одним із найважливіших чинників, що визначають загальну продуктивність

вебдодатків і, як наслідок, задоволеність користувачів від роботи з системою. Фа-

хівці рекомендують веброзробникам дотримуватися комплексу перевірених ме-

тодик для покращення ефективності роботи з базами даних [8]:

1. Використання EXPLAIN із запитами SELECT.

2. Включення індексів на шуканих стовпцях.

3. Використання ідентифікаційних полів, коли це можливо.

4. Мінімізування NULL-значення за замовчуванням.

5. Використання небуферизованого режиму для запитів.

6. Оптимізація розміру стовпця для ефективності.

1. Використання EXPLAIN із запитами SELECT

Одним із найважливіших інструментів для оптимізації запитів до бази даних

у MySQL є оператор EXPLAIN. Він дає змогу розробникам отримати детальну

інформацію про те, як MySQL виконує запити SELECT. Аналізуючи вивід

EXPLAIN, можна виявити «вузькі місця» запиту, як-от повне сканування таблиць

(Full Table Scan), відсутність або неефективне використання індексів, а також не-

коректне об’єднання таблиць [3].

2. Включення індексів на шуканих стовпцях

Індекси є фундаментальним механізмом для прискорення доступу до даних

у базах даних. Вони працюють аналогічно предметному покажчику в книзі: за-

мість повного перегляду всіх сторінок для пошуку потрібної інформації, індекс

дає змогу швидко перейти до необхідного місця [6]. Для MySQL індексація стовп-

ців, за якими здійснюється пошук (WHERE), сортування (ORDER BY) або об’єд-

нання таблиць (JOIN) є критично важливими.

93

3. Використання ідентифікаційних полів, коли це можливо

Ідентифікаційні поля, або первинні ключі (Primary Keys), відіграють централь-

ну роль у структурі реляційних баз даних. Вони забезпечують унікальність кож-

ного запису в таблиці та є основним засобом для швидкого доступу до конкрет-

них даних. Зазвичай первинні ключі реалізуються як автоінкрементні цілі числа,

що забезпечує їх компактність і ефективність для індексації [8].

4. Мінімізування NULL-значення за замовчуванням

Під час проєктування структури бази даних важливо враховувати вплив

NULL-значень на продуктивність запитів. Хоча NULL може здаватися зручним

для представлення відсутності даних, його використання має свої наслідки. По-

перше, NULL-значення можуть ускладнити логіку запитів, оскільки для них по-

трібні спеціальні оператори (IS NULL, IS NOT NULL) замість звичайних порів-

нянь. По-друге, NULL-значення можуть негативно впливати на ефективність ін-

дексів, оскільки індекси не завжди охоплюють рядки з NULL.

5. Використання небуферизованого режиму для запитів

У деяких сценаріях роботи з базою даних, особливо під час обробки великих

обсягів даних, використання небуферизованого режиму для запитів може значно

покращити продуктивність. За замовчуванням більшість драйверів баз даних

(у тому числі для PHP) буферизують усі результати запиту в пам’яті сервера до-

датків перед тим, як надати їх програмі [4]. Це може призвести до значного спо-

живання пам’яті та затримок, якщо результат запиту великий.

6. Оптимізація розміру стовпця для ефективності

Правильний вибір типів даних та розмірів стовпців є ключовим аспектом оп-

тимізації схеми бази даних. Використання надлишкових типів даних або необґрун-

товано великих розмірів стовпців може призвести до зайвого споживання диско-

вого простору та оперативної пам’яті, а також сповільнити виконання запитів.

Кожен зайвий байт, що зберігається в таблиці, впливає на швидкість читання да-

них, оскільки більше даних потрібно завантажувати з диска [5].

Проведене дослідження підтверджує, що оптимізація запитів до бази даних

є критично важливою для забезпечення високої продуктивності та масштабова-

ності сучасних вебпроєктів на PHP з MySQL. Аналіз останніх досліджень та ре-

комендацій фахівців виявив низку ключових практик, впровадження яких дає

змогу ефективно вирішувати проблему «вузьких місць», спричинених неоптимі-

зованими SQL-запитами. Зокрема, систематичне використання EXPLAIN для

аналізу запитів SELECT, грамотне індексування шуканих стовпців, застосування

ідентифікаційних полів, мінімізація NULL-значень та використання NOT NULL,

а також задіяння небуферизованого режиму для великих обсягів даних і ретельна

оптимізація розмірів стовпців – усі ці методики є фундаментальними. Їх комплекс-

не застосування не лише покращує швидкість взаємодії вебдодатків з базою да-

них, але й підвищує загальну стабільність системи і задоволеність користувачів,

що є ключовим у динамічному середовищі веброзробки.

Список використаних джерел

1. Оптимізація запитів SQL в PHP. Foxminded. 09.04.2025. URL: https://surl.li/vkxnrj (дата

звернення: 13.05.2025).

https://surl.li/vkxnrj

94

2. PHP Performance Tuning Tips and Tricks. MoldStud Research Team. URL: https://surl.li/
hcjqxy (дата звернення: 13.05.2025).

3. MySQL 8.4 Reference Manual. Optimization. Oracle. 2024 (section «Optimizing Queries
with EXPLAIN»). URL: https://surl.lu/hrcnww (дата звернення: 13.05.2025).

4. Prakash A. MySQL Query Optimization: Faster Performance & Data Retrieval. Airbyte Data
Engineering. 05.09.2025. URL: https://surl.li/kwjwxg (дата звернення: 13.05.2025).

5. Crudu A. Optimizing MySQL Join Queries for Efficiency. Moldstud Tech Blog. 2024. URL:
https://surl.li/wqupiw (дата звернення: 13.05.2025).

6. Shykunov K. Індекси в MySQL – чому вони потрібні та як з ними працювати.
Developers.org.ua. 01.11.2023. URL: https://dou.ua/forums/topic/45982/ (дата звернення: 18.05.2025).

7. Керування базами даних та інтеграція з веб-додатками: MySQL, MongoDB і SQL
Server. Redstone. 14.10.2025. URL: https://redstone.agency/blog/keruvannia-bazamy-danych-ta-
intehracija-z-veb-dodatkamy-mysql-mongodb-i-sql-server/ (дата звернення: 18.05.2025).

8. Rose-Collins F. 10 найкращих практик оптимізації баз даних для веб-розробників.
Ranktracker. 03.11.2023. URL: https://www.ranktracker.com/uk/blog/top-10-best-practices-for-opti-
mizing-databases-for-web-developers/ (дата звернення: 18.05.2025).

УДК 004.8:613.2

Ліваковський В. К., здобувач вищої освіти
4 курсу спеціальності 122 Комп’ютерні науки,
Римар П. В., старший викладач кафедри
інформаційних технологій

РОЗРОБКА ПЛАТФОРМИ ДЛЯ УПРАВЛІННЯ ХАРЧУВАННЯМ

З ІНТЕГРАЦІЄЮ ШТУЧНОГО ІНТЕЛЕКТУ

Донецький національний університет імені Василя Стуса, м. Вінниця

Раціональне харчування є ключовим фактором підтримки здоров’я людини.
У сучасному інформаційному просторі користувачі стикаються з браком персо-
налізованих інструментів та складністю формування здорових звичок. Цифрові
платформи мають потенціал для вирішення цих проблем [1]. У дослідженні [2]
детально розглянуто класифікацію рекомендаційних систем, серед яких контент-
но-орієнтовані та колаборативні фільтри. Саме їх поєднання дає змогу створити
гібридну модель, здатну адаптуватися до поведінкових змін користувача. У ро-
боті [3] автор досліджує використання нейромереж у побудові рекомендацій, ак-
центуючи на їх здатності навчатися на великих обсягах користувацьких даних та
формувати точні прогнозні оцінки.

Окремий напрям розвитку систем – це застосування комп’ютерного зору для
аналізу візуальних характеристик страв, їх складу та відповідності дієтичним об-
меженням, що представлено у праці [4]. Водночас впровадження інтелектуаль-
них платформ для харчування супроводжується низкою викликів. Серед основ-
них – необхідність побудови якісної бази харчових продуктів із точною калорій-
ністю та мікроелементами, адаптованої до локального ринку; забезпечення етич-
ного збору персональних даних; труднощі з підтриманням мотивації користувача
в довгостроковій перспективі. Для подолання цих бар’єрів важливо передбачити
гейміфікацію процесу, гнучке навчання системи на індивідуальних даних та про-
зору політику конфіденційності.

https://surl.li/hcjqxy
https://surl.li/hcjqxy
https://surl.lu/hrcnww
https://surl.li/kwjwxg
https://surl.li/wqupiw
https://dou.ua/forums/topic/45982/
https://redstone.agency/blog/keruvannia-bazamy-danych-ta-intehracija-z-veb-dodatkamy-mysql-mongodb-i-sql-server/
https://redstone.agency/blog/keruvannia-bazamy-danych-ta-intehracija-z-veb-dodatkamy-mysql-mongodb-i-sql-server/
https://www.ranktracker.com/uk/blog/top-10-best-practices-for-optimizing-databases-for-web-developers/
https://www.ranktracker.com/uk/blog/top-10-best-practices-for-optimizing-databases-for-web-developers/

