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доступної площі (900 клітин) вдалося обстежити 896 клітин, водночас виявлено 

103 критичні зони. Жоден із дронів не вийшов з ладу, що підтверджує стабіль-

ність реалізованої логіки кооперативної роботи. 

Розроблена модель демонструє ефективність адаптивного сканування тери-

торії в умовах обмеженого доступу та змінної обстановки. Впровадження A*-ал-

горитму дало змогу уникнути значної втрати покриття навіть у випадках із висо-

кою щільністю перешкод. Отримані результати підтверджують доцільність за-

стосування моделі в задачах моніторингу, пошуку та рятування, а також як осно-

ви для подальшого вдосконалення інтелектуального управління мультиагентними 

системами. 
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Машинне навчання – це потужний інструмент аналізу даних, здатний вияв-

ляти закономірності, робити прогнози та приймати рішення на основі статистич-

них і обчислювальних методів. В основі роботи будь-якої моделі машинного на-

вчання лежить обробка числової інформації, тож точність і ефективність обчис-

лень мають вирішальне значення. Особливо важливими є класичні чисельні ме-

тоди, що дають змогу аналізувати дані, будувати та навчати моделі, а також оці-

нювати їх точність [1; 2]. 

Початковим кроком у створенні моделі є оцінка точності її передбачень, яка 

базується на понятті похибки. У машинному навчанні похибка – це різниця між 

передбаченим і фактичним значенням. Похибки бувають різних типів: середньо-

квадратична похибка (MSE), середня абсолютна похибка (MAE), середня абсо-

лютна процентна похибка (MAPE) тощо. Вони визначають, наскільки добре мо-

дель узагальнює закономірності в даних [2]. Наприклад, у задачі регресії модель 

може давати незначні помилки на тренувальних даних, але водночас сильно по-

милятися на нових – у цьому випадку аналіз похибок дає змогу виявити проблему 

перенавчання. У чисельних методах похибка також відіграє критичну роль. Зок-
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рема, під час обчислення похідних або інтегралів із кроком ℎ завжди наявні по-

хибки дискретизації, які потрібно враховувати, щоб не накопичити критичних 

помилок у кінцевому результаті [6]. 

Наступним елементом є інтерполяція – метод, що дає змогу знаходити про-

міжні значення функції за заданими точками. У машинному навчанні інтерполя-

ція може використовуватись для заповнення пропущених даних, передобробки 

сигналів, згладжування або створення синтетичних прикладів. Серед основних 

методів інтерполяції виділяють поліноміальну інтерполяцію Лагранжа та Нью-

тона [1; 6]. Інтерполяція Лагранжа дає змогу побудувати єдиний поліном, який 

точно проходить через усі задані точки. Проте зростання ступеня полінома веде 

до осциляцій (ефект Рунге), тож цей метод ефективний лише за умови невеликої 

кількості точок. Натомість інтерполяція Ньютона використовує розділені різниці 

та дає змогу поступово додавати нові точки без повного перерахунку полінома, 

що робить її зручнішою для адаптивних обчислень. У системах машинного на-

вчання ідеї інтерполяції використовуються у згладжувальних алгоритмах, як 

radial basis functions, у згорткових мережах для ресемплінгу зображень або під 

час реконструкції відсутніх значень у часових рядах [3]. 

З інтерполяцією тісно пов’язана апроксимація, яка не ставить за мету точне 

проходження через усі точки, а прагне знайти функцію, що наближено описує 

поведінку об’єкта. Саме апроксимаційна здатність – головна мета будь-якої мо-

делі машинного навчання [2; 4]. Наприклад, лінійна регресія апроксимує зв’язок 

між вхідними ознаками та цільовою змінною, будуючи гіперплощину в багато-

вимірному просторі. Інші моделі, як-от дерева рішень, нейронні мережі чи метод 

опорних векторів, також виконують апроксимацію, але з використанням неліній-

них функцій. Ефективна апроксимація часто вимагає зменшення впливу шуму в 

даних, і саме тут виникає необхідність контролю за рівнем узгодження функції з 

реальною залежністю. Чим краще метод апроксимації відображає тенденції в да-

них, тим точнішою буде модель [2; 7]. 

Щоб оцінити залежність між змінними, часто застосовується коефіцієнт ко-

реляції. Класичним прикладом є коефіцієнт Пірсона, який показує ступінь ліній-

ної залежності між двома числовими змінними [1; 5]. Якщо ознака має високу 

кореляцію з цільовою змінною, її можна вважати корисною для навчання моделі. 

Якщо ж кореляція близька до нуля, ця ознака, ймовірно, не має значення. У ма-

шинному навчанні це використовується під час етапу вибору ознак, а також для 

зменшення розмірності. До того ж кореляційний аналіз дає змогу виявляти мульти-

колінеарність – ситуацію, коли дві або більше ознак надто подібні одна до одної, 

що погіршує точність моделей регресії. 

Усі вищезгадані методи неможливо реалізувати без активного використання 

лінійної алгебри та матричних операцій. Машинне навчання у своїй основі – це 

робота з векторами, матрицями та тензорами. Наприклад, тренування лінійної 

моделі регресії з використанням методу найменших квадратів зводиться до роз-

в’язання системи лінійних рівнянь, яка у матричній формі виглядає як 

𝑤 = (𝑋𝑇𝑋)−1𝑋𝑇𝑦, (1) 

де 𝑋 – матриця ознак; 
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𝑦 – вектор відповідей; 

𝑤 – вектор ваг [4]. 

У більш складних моделях, як-от нейронні мережі, використовуються десятки 

та сотні матричних операцій під час кожної ітерації навчання. Вміння ефективно 

працювати з матрицями – ключ до швидкого навчання моделей, особливо за 

умови великої кількості даних. Тому використовуються методи LU-, QR- та SVD-

розкладів для обчислювальної оптимізації, стабілізації рішень та зниження роз-

мірності даних [4; 5]. 

Нарешті, важливе місце в аналітичній частині займає чисельне інтегрування. 

У машинному навчанні воно застосовується, зокрема, в баєсівських моделях, де 

необхідно обчислювати апостеріорні розподіли, очікування та ймовірності [3]. 

Класичні методи прямокутників, трапецій, Сімпсона використовуються для на-

ближеного обчислення інтегралів, коли неможливо знайти точне аналітичне зна-

чення [6]. До того ж у класифікаційних задачах оцінка AUC (area under the ROC 

curve) – це, по суті, обчислення площі під кривою, що також виконується чисель-

но. Сучасні методи, як-от Монте-Карло інтегрування, дають змогу оцінювати 

складні багатовимірні інтеграли в задачах високої складності [2; 3]. 

Отже, усі перелічені методи обчислень – похибки, інтерполяція, апроксима-

ція, кореляція, робота з матрицями та чисельне інтегрування – мають тісний зв’я-

зок із машинним навчанням. Вони є не лише фундаментальною основою для 

створення моделей, а й практичними інструментами для їх оптимізації та аналізу. 

Розуміння цих методів дає змогу будувати ефективні алгоритми, які точно пра-

цюють із реальними даними, виявляють закономірності та формують прогнози. 

Саме тому класичні методи обчислень і надалі залишаються актуальними в епоху 

інтелектуальних технологій. 
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